Difference between revisions of "KmPlot/Using Sliders/de"

(Created page with "Ein besonderes Merkmal von '''KmPlot''' ist die Veranschaulichung der Wirkung eines Parameters auf den Kurvernverlauf einer Funktion.")
(Created page with "==Verschieben der Sinuskurve==")
Line 2: Line 2:
 
Ein besonderes Merkmal von '''KmPlot''' ist die Veranschaulichung der Wirkung eines Parameters auf den Kurvernverlauf einer Funktion.  
 
Ein besonderes Merkmal von '''KmPlot''' ist die Veranschaulichung der Wirkung eines Parameters auf den Kurvernverlauf einer Funktion.  
  
==Moving a Sinus Curve==
+
==Verschieben der Sinuskurve==
  
 
Let's see, how to move a sinus curve left and right:
 
Let's see, how to move a sinus curve left and right:

Revision as of 17:53, 11 October 2010

Other languages:
Deutsch • ‎English • ‎dansk • ‎français • ‎українська

Ein besonderes Merkmal von KmPlot ist die Veranschaulichung der Wirkung eines Parameters auf den Kurvernverlauf einer Funktion.

Verschieben der Sinuskurve

Let's see, how to move a sinus curve left and right:

  • Create a new cartesian plot.
  • Enter the equation
    f(x,a) = sin(x-a)
  • Check the Slider option and choose Slider No. 1 from the drop down list.
  • To make the available sliders visible, check View -> Show Sliders

Now you can move the slider and see how the parameter value modifies the position of the curve.

Trajectory of a Projectile

Now let's have a look at the maximum distance of a projectile thrown with different angles. We use a parametric plot depending on an additional parameter which is the angle.

  • Define a contant v_0 for the starting velocity.
  • Create a new parametric plot
  • Enter the equations
    f_x(t,α) = v_0∙cos(α)∙t
    f_y(t,α) = 2+v_0∙sin(α)∙t−5∙t^2
  • Check the Slider option and choose Slider No. 1 from the drop down list.
  • To make the available sliders visible, check View -> Show Sliders

Now you can move the slider and see how the distance depends on the parameter value.

Kmplot projectile.gif

This page was last edited on 11 October 2010, at 17:53. Content is available under Creative Commons License SA 4.0 unless otherwise noted.