Kig/Macros: Difference between revisions

From KDE UserBase Wiki
m (Added breadcrumbs)
No edit summary
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Welcome_to_KDE_UserBase|Home]] >> [[Applications]] >> [[Applications/Education|Education]] >> [[Kig]] >> [[Kig/Macros|Macros]]
{{EduBreadCrumbs|parent=Kig}}
{{Note|All macros following require a '''Kig''' version with python script support.}}


{{Construction}}
{{KigMacro|cirkel|A circle BTP constructed using the circle BCP|http://edu.kde.org/kig/downloads/macros/circleBTP_by_circleBCP.kigt|Dominique Devriese}}


[[Kig]] >> [[Kig/Macros|Macros]]
{{KigMacro|ConicByLocus|A conic constructed as a locus.|http://edu.kde.org/kig/downloads/macros/conic_by_locus.kigt|Dominique Devriese}}


==cirkel==
{{KigMacro|ConicCenter|The center of a conic.|http://edu.kde.org/kig/downloads/macros/ConicCenter.kigt|Dominique Devriese}}


A circle BTP constructed using the circle BCP
{{KigMacro|LineConicMainAxis|The main axis of a conic.|http://edu.kde.org/kig/downloads/macros/LineConicMainAxis.kigt|Dominique Devriese}}


{|width="100%" cellpadding="5"
{{KigMacro|LineConicSecondAxis|The secondary axis of a conic.|http://edu.kde.org/kig/downloads/macros/LineConicSecondAxis.kigt|Dominique Devriese}}
|Dominique Devriese
 
|[http://edu.kde.org/kig/downloads/macros/circleBTP_by_circleBCP.kigt circleBTP_by_circleBCP.kigt]
{{KigMacro|Translatie|Mirror a point using the translation.|http://edu.kde.org/kig/downloads/macros/mirrorpoint_by_translationpoint.kigt|Dominique Devriese}}
|GPL
 
|}
{{KigMacro|Triangel Centers|This package contains 6 macros all about special points of triangles.
;Baricenter
:Baricenter of a triangle, given the vertices
;Circumcenter
:Circumcenter of a triangle, given the vertices
;Gauss Segment
:Gauss Segment of a triangle, given the vertices
;Incenter
:Incenter of a triangle, given the vertices
;Inscribed circle
:Inscribed circle on a triangle, given the vertices
;Ortocenter
:Ortocenter of a triangle, given the vertices|http://edu.kde.org/kig/downloads/macros/triangle_centers.kigt|Noel Torres|Public Domain}}
 
{{KigMacro|Star|Two different ways to contruct a star.|http://edu.kde.org/kig/downloads/macros/starswith5points.kigt|Maurizio Paolini}}
 
{{KigMacro|Tropical Geometry|This package contains 4 macros:
;TropicalLine1pt
:A tropical line constructed using its centre point
;TropicalLine2pt
:The stable tropical line passing through two points
;TropicalLineLineIntersection
:The stable intersection of two tropical lines, to select a tropical line, select its centre point
;TropicalConic
:Stable Conic Passing through 5 points|http://edu.kde.org/kig/downloads/macros/tropical_geometry.kigt|Luis Felipe Tabera|GPL|lftabera AT yahoo DOT es}}
 
[[Category:Education]]

Latest revision as of 17:22, 16 September 2010

Home » Applications » Education » Kig » Macros

Note

All macros following require a Kig version with python script support.


cirkel

A circle BTP constructed using the circle BCP
License Author
GPL Dominique Devriese


ConicByLocus

A conic constructed as a locus.
License Author
GPL Dominique Devriese


ConicCenter

The center of a conic.
License Author
GPL Dominique Devriese


LineConicMainAxis

The main axis of a conic.
License Author
GPL Dominique Devriese


LineConicSecondAxis

The secondary axis of a conic.
License Author
GPL Dominique Devriese


Translatie

Mirror a point using the translation.
License Author
GPL Dominique Devriese


Triangel Centers

This package contains 6 macros all about special points of triangles.
Baricenter
Baricenter of a triangle, given the vertices
Circumcenter
Circumcenter of a triangle, given the vertices
Gauss Segment
Gauss Segment of a triangle, given the vertices
Incenter
Incenter of a triangle, given the vertices
Inscribed circle
Inscribed circle on a triangle, given the vertices
Ortocenter
Ortocenter of a triangle, given the vertices
License Author
Public Domain Noel Torres


Star

Two different ways to contruct a star.
License Author
GPL Maurizio Paolini


Tropical Geometry

This package contains 4 macros:
TropicalLine1pt
A tropical line constructed using its centre point
TropicalLine2pt
The stable tropical line passing through two points
TropicalLineLineIntersection
The stable intersection of two tropical lines, to select a tropical line, select its centre point
TropicalConic
Stable Conic Passing through 5 points
License Author
GPL Luis Felipe Tabera (lftabera AT yahoo DOT es)