Khipu/newstuff/data/test.khipu
[ { "dimension" : 2, "image" : "iVBORw0KGgoAAAANSUhEUgAAAMgAAADICAIAAAAiOjnJAAAAA3NCSVQICAjb4U/gAAAACXBIWXMAAA7EAAAOxAGVKw4bAAATB0lEQVR4nO2dXWwb15XHz1AUJVqibIm2JevTkmg3ayPrOK2zXSTZNAjQGEYNw9mnFCjQbNqut33Ipk26QGDAdbdZoEDQtEnfvGnah/apsBFnLSNO6rSOYyipJUumPqxv2TItKfyQRHI03/fuw9jj4VAcjiYcjUY+vwfDPDr3zBnyz+HMmTv3MJRSuIcoioFAAHTkWyRJ8vv9DMOYu+VbLLrZHuh0/Fu3gFLa1ubUjlNKZVkuLy93KD4hhBDi9/sdiq8oCgCUlZWpL3M2g5jAcUApLC4Cy8L27ZArAMQICssqCwvAcYwsQyAAc3PQ0uJ2Qusbn9sJeIZMBmQZqquB58GP38di4DtklS1bAIA2NjJbt8KmTW5ns+5BYVklEgFCSCBQlndqi6wA/hRaJfc6GCkCCmt1pFJAiNtJeAEU1uoYHHQ7A4/gJ7ovIKWU5H4f8y2EEEqpvqxqcaBFN9sDnY5PCFBKQyEKQLW/lDYxh/MnjsZX89cq535JkrS/ybJsiGjFUlq3dRtflhlCSHMzSJLiRHz1ozJ8Y0se36CGEsZXI2vx/RUVFdrfGIYx1OnzLT6fL/+WjpWBFt1sD3Q6fiAAiqKEw2X6S+kSxl/xlk4J4694S6eE8Q23dPAcC3EEFJYZ6XQ6k067nYUnQWGZcWN4eGRkxO0sPAkKy4wdjY2pVNLtLDwJCsuMYGXl448/4XYWngTvFZqxdds2t1PwKnjEQhzBr690EUIMha98i6IoTN79WCsDLbrZHuh0fEVhFIXIMl3twHWS/4ol9dImpm5FfenXl3pXvFdT1FJat3UbX70jQqlvtQOtJ0YI8fmcil/oXlwJ8we9sPSlXkqpofKbbwGA/Mq7xYFW3GwPdDp+eTkoilJeXuZcYgzDOJf/ ipX3EsbHyjuyFqCwzEgkEvH4F25n4UlQWGYMDgwMDQ65nYUnwTqWGVVVVflnsogVUFhmtLe3o6zsgcIyI7x1q9speBU8x0IcAYWFOIKf4zjthaIoapnL3JJf8rcy0Hp8ewOdji8IDCFU926VPv8Vb6CVKr5aK9c/4lDy+ABw/2GKYDCo/Q2XMTKxCAIoihIMlq12oEU3urGWMcKfQsQRUFhmjI2N4tRke6CwzGhtbcMVG+yBwjLjTizW2NjodhaeBAukZtQ3NOgvbhDroLDM2IQrrNkFfwoRR0BhIY6AlXerblh5LxofsPJuYyBW3s0tWHlH1gIUlhnpdDoej7udhSdBYZnxWXd3Npt1OwtPgsIyo7a2Nv4FPqVjByyQmrF37158mMIeKCwzglh5twv+FCKOgMJCHAEr71bdsPJeND7oK+/Z8+fve8tyWW5l1oqltG7rNj7PAiEkG/KtdqBVN0oVQrTKdcnjU0opIT7n4hNCAbRlmBj9VQ/e0jGxLC5qDQQciY+3dB4gWJZNJXHVZDugsMwYiEazLFbe7eC7cH2e5Vfoy4MAwFceeih2O+Z2Fp7E/8+7wpdHkpTCv+zZitVSAwsLC207d7qdhSfxh4L+Z/fVs4LMi0o1djvOpb293e0UvMrdc6yqCn8dygopHdhh1aqb2mHV6Q6l2GHVKbd1G1/tsCpJTDE37LAKgB1WrbupHVYrKspWO9Ci24oFUuywiiA5oLDMIIRkMxm3s/AkKCwzbk5PR6NRt7PwJCgsM+KJOD5MYQ8stpvx2GP/tLiw4HYWngSPWEXYUlvrdgqeBIWFOAJ2WLXqhh1Wi1oAO6zaGIgdVotaQC8s7LBq0Q07rJpbsPKOrAUoLDNm79zB1WbsgcIygxeEifFxt7PwJCgsM+rr66uqqtzOwpOgsMxIpVJNzc1uZ+FJ8JaOGc2oKrvgEQtxBBQW4gi42oxVN1xtpmh8wHXebQzEdd7NLVh5R9YCFJYZd2Kx2dlZt7PwJCgsM2o2b56dveN2Fp4E hWXGrZs3m5uwlGUHFJYZtXV1ct4lEmIFrLybsWPHDrdT8Cp4xEIcYUMdsXqZ3kEYDEHoq/DVTuhcs+3egBs90CODvB/2PwQPrdl21zPM8vKy9kJRFONy0BYspXWzPfCm7+bPyn/2jO+ZLGS7aFej2PhL8stqpbpU8dNphhC6ZUvOwFll9tXAq3yAPwSHyqDsAlxYFpffUt5qgRYbu5k/572E749aeXc0Pugq73e3pyIIAs0l3yKKojYtf1UDLbrZHkgo0YwKVc7Rc0/RpyaEiVLFX1igiYSstwzRoSfJk5foJYUqWg6fS58/RZ/qpt2rzp8QURRtJGbRTVEUSZKciy/LsizLHEcTCUoNz5x4Ggbu32Xyge8QHHoX3v1B+Q/mYM6JzY3B2Mvw8h+lPz4JT/runaoywOwj+87Amdfh9V7odWK76xy/H/r6ADb2yXs7tL8lvXUMjnHAFfdeicWFBf2pgsYCLPwEfvIOvFMP9fl/rYXa38PvT8CJWXjgqvaCAC0tABtbWAAQgchL8NJr8BoB47OaVhgfH19aWjIYZZBfhVdPwskmaCo0sA7qfg2//jH8WATRxna9S1UV7N4NoBeWKEI2CxwHogiSBDwP4oZ4T56Gp5ug6QycsTG2tbU13/gOvPMEPLEf9puP7YTOb8O334A3KGzkVpqiCJSC2oZ2eRlkGSQJRPGesAQBBgZgYgIIgYEBEATo6YGeHjczLiEvwUun4bSNk626cHjbtm16yziMX4Wr34HvWBl+GA7HIX4Nrq12ux7i+nXgeZiaAlFkhoaYqSmYnobRUfABAM/D4iLU1UFLC9y5A4EADA8Dz8OGKTuXQ/lJOHkSTq72B9Hv9+snMCmg/Bx+/gv4RRkYL8gLcRJOvgFvCCCsarseYscOYBioqACWZTiOWVoCnw+qq8EHAJWVUF8P4TBksxAOw7ZtsGcPPPYYhMNuZ106IhDZB/veg/e+TJDfwe+OwJEVT9gLUQM134fv/9b/ 2y+z3fWMWtirqYGKCtLSQvbvhx07IBzWnWOFQtDaCnV1UF8PVVUQCkEo5Fq6TvA9+N5pOL0Ii/aGLwTmh0NXj8LR1Q78Bnxjns4Pw7C97a5zqqqgshI6OmDTJmhogFOn4Px5mJwEf6+u2iLLPkMPxJUsTF6fREsDLce3OdCCm//52tf+nfzP8aU39UUvK/EpkP+qe+2V1Ot9udfR1hJj/rX8+H9uf/m/Y+/6791Dy3ejFPL6VJby/aEUCGGci08Ioy0/I0ngf/TR+38TRWKY7pxvkSTq94NhhSwrAy262R5oze0frtOGNPPXp+HpVQ38M5w+uPj1A6FthtMDy4nVHAs811v/v8fgWCE3SkGWiWE1mxK+P4QAIdSghhLGVxQKAAcO3H25wetY+fxI/tEpOJWGtPUhczB3Fs6+AP/2ZbZ7BI70Q/84PCgrQahXhTzLsvqneXieT6fT+tqgLMuSJBnK0DzPJxIJUVfv4nleEIQF3YKwhBBBEHieNwzMZDLSvYGU0mReI9NkMml4FmppaSmuFkx0pNNGiazYFlXLvIJWvAKvnIAT8/PzhgeYWJbNZPKi8exxOH4CThS6EjTsGgCw2Wwmd3V4Qkh8Pn4CTpyAExLcfQCL57j8JfZuz8wU3cFUKmXYQUppPG58Z1LJ5IpL+AmCkEolqW7ZNJ7n8z8gURT1W6GUCjw/NztrGKgoin6soiiiKM7MzPjS6aXLn3zyl48+1J44UxTlg/Pn+65d43UP0fX39cVit98/e/+qanl5+eOLF6emJvXrsXSdO7e8vBy93q9ZxsfGxkZHu86d0yySKH544cLgwMCNGzdUSzKR+OjDC4a34MIHH0xPT+ktlJCRkRG9RRCEjy9eNAzMb4tKCPm/989qL/fD/m2w7e2pt2bv5MxnZ7PZgeiA3sLz/H9cOXYADphMwtHvmko2mx0cyImjKMrHF//SAA3PwXO/gd+oxo8++tDwReU4rk+906bjwgcfGPQhSdLExITeEo/ Hz5w2VoC7u7unp6cNxtHRkYnx8bPvvad9aUVR/OjDC4a96Dp3juO4/v77n+PN6enBwcErV66wLKtaCCHnu7omxseHBgc1t4Fo9NbNm591d/sWF5e2b99eUVE5NTmpJj06Otre0bF3795bt26p3uNjY83NzZIoTU3d/aRZlp2bnW1qamptbdMehYtGo5FIhGGYtradqmV6aqq+oYECRCIR1SIIwtTUVFtbW0VFhfp+sSybTCWXl3Nu50Wj0XA4rMj3jyjTU1OZbEbfllIQhIFoNJHIWb9qZGSkvaND3xY1k0739vToj4gMMAejz/Z8pSe+OaEZJyYmsizb0dGhWTiOe//2WfJ1+iK8CIXRdk1DIaSzM0eIfr9ffU+OwtEYxD6GjwFgfn4+nXu/qLy8vLKyMn8TsVhOl1dRFCO7duktsiyH84pD+Y8HAkAksosCDQQqNLEGAoHW1jbDXkQikbKysta2Ns2ys73d7/d3Rjq1I5bP5+vs7Jybm0vrDvNqYqFQNVBKE/H48PAQy2a1uRCJePzG8HAiHtcsAs+nl5YS8bh+2kwiHo9ev55Op/UDb8/MXL16VbMQQhKJRCIe18+1SMTjk5OTCwsLqoUQMjY2ZpiPcf36dZZl9cZUKiXLst6iKMq13l7DXI7JyclYLGaIpiagt1wcuvgt8q0kTWrGsbHRwcEBzW2Gzhymh8cT46olf9qM6qZF1iwjIyPDQ0N6YyaT7rl6Vf3/Ml0+Qo8MCoOLi4v6eTKEkFQq1d/XZ4jW39+vdxMEIZlMKoqid2NZtqenxzBwYnxc76ZOm1EUJZlM9l27pn6I6o4n4nHD+5OIx+dmZz/r7jYYP+vuVj8CzaL9q06bEUVxYWHhypVPN858LBvxe2jPYXo4RVP5bjPSzEF6cJSOapZCwrKR2CydfUZ5ZoLmzBXbGPOxtJcP3FWhnkfh0eNw/Cgc7fP1abeKCZBLcOl53/ Nvwpu7YJd5BHs0QMMp5dSL8GIXdNmbdrH+edA7rH4NvvYH+MMP4YcBGvgm800FlC7aVUNr/iT9qam8Sf+pl7bDaiNpPE1O/xR++ivmV4eYQ9VQfRkuvw1vh0jIfKDtHV/jDquM/lpRlmXDohFWLKV1cyv+WOVYtCzqB/8+ZV+n3JnvtrTEEEJqa40dVr9kYjfLbvb7+7OQfVh5eI+wxzCRvIQ7rkrBufiqzrQ59dhh9a7xkbJHHoFHAADKAMrWrsPqbti9G3YDAPVRuRw7rCKIKSisImC/QnugsMzgef7S3/7mdhaeZEM9CV1aOI6LxWK4cLI9UFgFCQaDkUgEO6zaA38Ki4AdVu2BwkIcATusWnXDDqtFLYAdVm0MxA6rRS2gFxZ2WLXohh1WzS1YeUfWAhSWGYqi3BjemM8DOg0KywxK6RdfzLudhSfBAmlBOI6bnp6u2byluCuSBx6xChIMBjs7Oli8CW0LFJYZgYqKx594wu0sPAkKC3EEFBbiCNhh1aobdlgtGh+ww6qNgdhh1dyClXdkLUBhmSFJUm/vg9gH4MuDwioIIUSWpel766AgqwKFVRBRFOfn5xsaGtxOxJPgLZ2CVFZWNje3ABhnNSJWwCOWGX6/f6duRS7EOigsxBFQWIgjYOXdqhtW3ovGB6y82xiIlXdzC1bekbUAhVWEmbyF1xEroLAKIstyKpX89JNP3E7Ek6CwCkIISaczi3mtexEroLAKEggEdu7c+d0XXnA7EU+CwirCiq0ikKKgsBBHQGEhjoCVd6tuWHkvGh+w8m5jIFbezS1YeUfWAhSWGZRSrLzbA4VlhqIoV//+udtZeBKcmlwQjuNmZm5VVVW7nYgnQWEVJBgM7tzZvoS3dGyBP4VmBAKBAwceczsLT4LCQhzhQe+wat2ttB1WV7Q4nP+adlj160ux+SV1K5bSuq3b+LLMEEIkydhhtVTx1Y/ K8I0teXyDGkoYX42sxccOq1bdHOqwqrFi5R07rCJIDiisIiSTSbdT8CQoLDNYlv3kEnZYtQMKqyAcxw0MDHCGiTKINbDyXpBgMHjgwIFQKOR2Ip4Ej1hm+Hy+PXv2uJ2FJ0FhIY6AHVatumGH1aIWwA6rNgZih9WiFtALCzusWnTDDqvmFqy8I2sBCssMQRA+vXzZ7Sw8CQrLjEAggI/Y2wMLpAXhOC4Wi+Xf6kesgMIqSDAYjEQimXTa7UQ8Cf4UFiFUU+N2Cp4EhYU4AgoLcQRcbcaqG642UzQ+4GozNgbiajPmFqy8I2sBCssMRVH6+/vczsKToLAKQghJJpOX/opz3u2AwiqIKIpzc7PhrVvdTsSTYOW9IJWVlQ8//I+1W2rdTsST4BHLDIZhWlpb3c7Ck6CwEEdAYSGOgJV3q25YeS8aH7DybmMgVt7NLVh5R9YCFJYZiqL092Hl3Q4orILIsnx7ZubatWtuJ+JJUFgFIYRUBoObNm0y2EURslnIO8FFcsDKe0ECgcD27dufPXhQb+Q4uHEDysuhrg4aG91KzQOgsMxgGGbz5s3aS44DRYHaWpAkWGkNWOQ+KKxVEAxCOAyZDGQyEA67nc36BoW1akIhwMXYivL/YwUfngS8yt4AAAAASUVORK5CYII=", "name" : "Untitled 1", "plots" : "[ { \"arg1max\" : 5.0, \"arg1min\" : -5.0, \"color\" : \"#00ff00\", \"expression\" : \"x->sin(x)\", \"name\" : \"dsds\" } ]" } ]