KmPlot/Using Sliders: Difference between revisions

From KDE UserBase Wiki
(Marked this version for translation)
m (fix typos)
 
Line 2: Line 2:
<translate>
<translate>
<!--T:1-->
<!--T:1-->
A main feature fo '''KmPlot''' is to visualize the influence of parameters to the curve of a function.  
A main feature of '''KmPlot''' is to visualize the influence of parameters to the curve of a function.  


==Moving a Sinus Curve== <!--T:2-->
==Moving a Sinus Curve== <!--T:2-->
Line 10: Line 10:


<!--T:4-->
<!--T:4-->
* Create a new cartesian plot.
* Create a new Cartesian plot.
* Enter the equation {{Input|1=f(x,a) = sin(x-a)}}
* Enter the equation {{Input|1=f(x,a) = sin(x-a)}}
* Check the <menuchoice>Slider</menuchoice> option and choose <menuchoice>Slider No. 1</menuchoice> from the drop down list.
* Check the <menuchoice>Slider</menuchoice> option and choose <menuchoice>Slider No. 1</menuchoice> from the drop down list.
Line 31: Line 31:


<!--T:10-->
<!--T:10-->
* Define a contant v_0 for the starting velocity.
* Define a constant v_0 for the starting velocity.
* Create a new parametric plot
* Create a new parametric plot
* Enter the equations {{Input|1=<nowiki>f_x(t,α) = v_0∙cos(α)∙t
* Enter the equations {{Input|1=<nowiki>f_x(t,α) = v_0∙cos(α)∙t

Latest revision as of 18:08, 11 October 2010

A main feature of KmPlot is to visualize the influence of parameters to the curve of a function.

Moving a Sinus Curve

Let's see, how to move a sinus curve left and right:

  • Create a new Cartesian plot.
  • Enter the equation
    f(x,a) = sin(x-a)
  • Check the Slider option and choose Slider No. 1 from the drop down list.
  • To make the available sliders visible, check View -> Show Sliders

Now you can move the slider and see how the parameter value modifies the position of the curve.

Trajectory of a Projectile

Now let's have a look at the maximum distance of a projectile thrown with different angles. We use a parametric plot depending on an additional parameter which is the angle.

  • Define a constant v_0 for the starting velocity.
  • Create a new parametric plot
  • Enter the equations
    f_x(t,α) = v_0∙cos(α)∙t
    f_y(t,α) = 2+v_0∙sin(α)∙t−5∙t^2
  • Check the Slider option and choose Slider No. 1 from the drop down list.
  • To make the available sliders visible, check View -> Show Sliders

Now you can move the slider and see how the distance depends on the parameter value.