Difference between revisions of "KmPlot/Using Sliders"

(Tutorial for sliders use)
 
m (fix typos)
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A main feature fo '''KmPlot''' is to visualize the influence of parameters to the curve of a function. Let's see, how to move a sinus curve left and right:
+
<languages />
 +
<translate>
 +
<!--T:1-->
 +
A main feature of '''KmPlot''' is to visualize the influence of parameters to the curve of a function.  
  
* Create a new cartesian plot.
+
==Moving a Sinus Curve== <!--T:2-->
 +
 
 +
<!--T:3-->
 +
Let's see, how to move a sinus curve left and right:
 +
 
 +
<!--T:4-->
 +
* Create a new Cartesian plot.
 
* Enter the equation {{Input|1=f(x,a) = sin(x-a)}}
 
* Enter the equation {{Input|1=f(x,a) = sin(x-a)}}
 
* Check the <menuchoice>Slider</menuchoice> option and choose <menuchoice>Slider No. 1</menuchoice> from the drop down list.
 
* Check the <menuchoice>Slider</menuchoice> option and choose <menuchoice>Slider No. 1</menuchoice> from the drop down list.
 
* To make the available sliders visible, check <menuchoice>View -> Show Sliders</menuchoice>
 
* To make the available sliders visible, check <menuchoice>View -> Show Sliders</menuchoice>
  
 +
<!--T:5-->
 
Now you can move the slider and see how the parameter value modifies the position of the curve.
 
Now you can move the slider and see how the parameter value modifies the position of the curve.
  
==Screenshots==
+
<!--T:7-->
 
+
<gallery perrow="3" caption="Screenshots">
<gallery perrow="3">
 
 
Image:Kmplot_function_with_param.png|Input
 
Image:Kmplot_function_with_param.png|Input
 
Image:Kmplot_view_show_sliders.png|Show sliders option
 
Image:Kmplot_view_show_sliders.png|Show sliders option
 
Image:Kmplot_sliders.png|Slider window
 
Image:Kmplot_sliders.png|Slider window
 
</gallery>
 
</gallery>
 +
 +
==Trajectory of a Projectile== <!--T:8-->
 +
 +
<!--T:13-->
 +
Now let's have a look at the maximum distance of a projectile thrown with different angles. We use a parametric plot depending on an additional parameter which is the angle.
 +
 +
<!--T:10-->
 +
* Define a constant v_0 for the starting velocity.
 +
* Create a new parametric plot
 +
* Enter the equations {{Input|1=<nowiki>f_x(t,α) = v_0∙cos(α)∙t
 +
f_y(t,α) = 2+v_0∙sin(α)∙t−5∙t^2</nowiki>}}
 +
* Check the <menuchoice>Slider</menuchoice> option and choose <menuchoice>Slider No. 1</menuchoice> from the drop down list.
 +
* To make the available sliders visible, check <menuchoice>View -> Show Sliders</menuchoice>
 +
 +
<!--T:11-->
 +
Now you can move the slider and see how the distance depends on the parameter value.
 +
 +
<!--T:14-->
 +
[[Image:Kmplot_projectile.gif|center|692px|]]
 +
 +
<!--T:12-->
 +
[[Category:Education]]
 +
</translate>

Latest revision as of 18:08, 11 October 2010

Other languages:
Deutsch • ‎English • ‎dansk • ‎français • ‎українська

A main feature of KmPlot is to visualize the influence of parameters to the curve of a function.

Moving a Sinus Curve

Let's see, how to move a sinus curve left and right:

  • Create a new Cartesian plot.
  • Enter the equation
    f(x,a) = sin(x-a)
  • Check the Slider option and choose Slider No. 1 from the drop down list.
  • To make the available sliders visible, check View -> Show Sliders

Now you can move the slider and see how the parameter value modifies the position of the curve.

Trajectory of a Projectile

Now let's have a look at the maximum distance of a projectile thrown with different angles. We use a parametric plot depending on an additional parameter which is the angle.

  • Define a constant v_0 for the starting velocity.
  • Create a new parametric plot
  • Enter the equations
    f_x(t,α) = v_0∙cos(α)∙t
    f_y(t,α) = 2+v_0∙sin(α)∙t−5∙t^2
  • Check the Slider option and choose Slider No. 1 from the drop down list.
  • To make the available sliders visible, check View -> Show Sliders

Now you can move the slider and see how the distance depends on the parameter value.

Kmplot projectile.gif

This page was last edited on 11 October 2010, at 18:08. Content is available under Creative Commons License SA 4.0 unless otherwise noted.