KmPlot/Using Sliders: Difference between revisions

From KDE UserBase Wiki
No edit summary
m (fix typos)
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<languages />
<languages />
<translate>
<translate>
A main feature fo '''KmPlot''' is to visualize the influence of parameters to the curve of a function.  
<!--T:1-->
A main feature of '''KmPlot''' is to visualize the influence of parameters to the curve of a function.  


==Moving a Sinus Curve==
==Moving a Sinus Curve== <!--T:2-->


<!--T:3-->
Let's see, how to move a sinus curve left and right:
Let's see, how to move a sinus curve left and right:


* Create a new cartesian plot.
<!--T:4-->
* Create a new Cartesian plot.
* Enter the equation {{Input|1=f(x,a) = sin(x-a)}}
* Enter the equation {{Input|1=f(x,a) = sin(x-a)}}
* Check the <menuchoice>Slider</menuchoice> option and choose <menuchoice>Slider No. 1</menuchoice> from the drop down list.
* Check the <menuchoice>Slider</menuchoice> option and choose <menuchoice>Slider No. 1</menuchoice> from the drop down list.
* To make the available sliders visible, check <menuchoice>View -> Show Sliders</menuchoice>
* To make the available sliders visible, check <menuchoice>View -> Show Sliders</menuchoice>


<!--T:5-->
Now you can move the slider and see how the parameter value modifies the position of the curve.
Now you can move the slider and see how the parameter value modifies the position of the curve.


===Screenshots===
<!--T:7-->
 
<gallery perrow="3" caption="Screenshots">
<gallery perrow="3">
Image:Kmplot_function_with_param.png|Input
Image:Kmplot_function_with_param.png|Input
Image:Kmplot_view_show_sliders.png|Show sliders option
Image:Kmplot_view_show_sliders.png|Show sliders option
Line 22: Line 25:
</gallery>
</gallery>


==Trajectory of a Projectile==
==Trajectory of a Projectile== <!--T:8-->


[[Image:Kmplot_projectile.png|thumb]]
<!--T:13-->
Now let's have a look at the maximum distance of a projectile thrown with different angles. We use a parametric plot depending on an additional parameter which is the angel.
Now let's have a look at the maximum distance of a projectile thrown with different angles. We use a parametric plot depending on an additional parameter which is the angle.


* Define a contant v_0 for the starting velocity.
<!--T:10-->
* Define a constant v_0 for the starting velocity.
* Create a new parametric plot
* Create a new parametric plot
* Enter the equations {{Input|1=<nowiki>f_x(t,α) = v_0∙cos(α)∙t
* Enter the equations {{Input|1=<nowiki>f_x(t,α) = v_0∙cos(α)∙t
f_y(t,α) =2+ v_0∙sin(α)∙t−5∙t^2</nowiki>}}
f_y(t,α) = 2+v_0∙sin(α)∙t−5∙t^2</nowiki>}}
* Check the <menuchoice>Slider</menuchoice> option and choose <menuchoice>Slider No. 1</menuchoice> from the drop down list.
* Check the <menuchoice>Slider</menuchoice> option and choose <menuchoice>Slider No. 1</menuchoice> from the drop down list.
* To make the available sliders visible, check <menuchoice>View -> Show Sliders</menuchoice>
* To make the available sliders visible, check <menuchoice>View -> Show Sliders</menuchoice>


<!--T:11-->
Now you can move the slider and see how the distance depends on the parameter value.
Now you can move the slider and see how the distance depends on the parameter value.


<!--T:14-->
[[Image:Kmplot_projectile.gif|center|692px|]]
<!--T:12-->
[[Category:Education]]
[[Category:Education]]
</translate>
</translate>

Latest revision as of 18:08, 11 October 2010

A main feature of KmPlot is to visualize the influence of parameters to the curve of a function.

Moving a Sinus Curve

Let's see, how to move a sinus curve left and right:

  • Create a new Cartesian plot.
  • Enter the equation
    f(x,a) = sin(x-a)
  • Check the Slider option and choose Slider No. 1 from the drop down list.
  • To make the available sliders visible, check View -> Show Sliders

Now you can move the slider and see how the parameter value modifies the position of the curve.

Trajectory of a Projectile

Now let's have a look at the maximum distance of a projectile thrown with different angles. We use a parametric plot depending on an additional parameter which is the angle.

  • Define a constant v_0 for the starting velocity.
  • Create a new parametric plot
  • Enter the equations
    f_x(t,α) = v_0∙cos(α)∙t
    f_y(t,α) = 2+v_0∙sin(α)∙t−5∙t^2
  • Check the Slider option and choose Slider No. 1 from the drop down list.
  • To make the available sliders visible, check View -> Show Sliders

Now you can move the slider and see how the distance depends on the parameter value.