KmPlot/Using Sliders: Difference between revisions

From KDE UserBase Wiki
(added animated image)
m (fix typos)
 
(One intermediate revision by one other user not shown)
Line 2: Line 2:
<translate>
<translate>
<!--T:1-->
<!--T:1-->
A main feature fo '''KmPlot''' is to visualize the influence of parameters to the curve of a function.  
A main feature of '''KmPlot''' is to visualize the influence of parameters to the curve of a function.  


==Moving a Sinus Curve== <!--T:2-->
==Moving a Sinus Curve== <!--T:2-->
Line 10: Line 10:


<!--T:4-->
<!--T:4-->
* Create a new cartesian plot.
* Create a new Cartesian plot.
* Enter the equation {{Input|1=f(x,a) = sin(x-a)}}
* Enter the equation {{Input|1=f(x,a) = sin(x-a)}}
* Check the <menuchoice>Slider</menuchoice> option and choose <menuchoice>Slider No. 1</menuchoice> from the drop down list.
* Check the <menuchoice>Slider</menuchoice> option and choose <menuchoice>Slider No. 1</menuchoice> from the drop down list.
Line 31: Line 31:


<!--T:10-->
<!--T:10-->
* Define a contant v_0 for the starting velocity.
* Define a constant v_0 for the starting velocity.
* Create a new parametric plot
* Create a new parametric plot
* Enter the equations {{Input|1=<nowiki>f_x(t,α) = v_0∙cos(α)∙t
* Enter the equations {{Input|1=<nowiki>f_x(t,α) = v_0∙cos(α)∙t
Line 41: Line 41:
Now you can move the slider and see how the distance depends on the parameter value.
Now you can move the slider and see how the distance depends on the parameter value.


<!--T:14-->
[[Image:Kmplot_projectile.gif|center|692px|]]
[[Image:Kmplot_projectile.gif|center|692px|]]



Latest revision as of 18:08, 11 October 2010

A main feature of KmPlot is to visualize the influence of parameters to the curve of a function.

Moving a Sinus Curve

Let's see, how to move a sinus curve left and right:

  • Create a new Cartesian plot.
  • Enter the equation
    f(x,a) = sin(x-a)
  • Check the Slider option and choose Slider No. 1 from the drop down list.
  • To make the available sliders visible, check View -> Show Sliders

Now you can move the slider and see how the parameter value modifies the position of the curve.

Trajectory of a Projectile

Now let's have a look at the maximum distance of a projectile thrown with different angles. We use a parametric plot depending on an additional parameter which is the angle.

  • Define a constant v_0 for the starting velocity.
  • Create a new parametric plot
  • Enter the equations
    f_x(t,α) = v_0∙cos(α)∙t
    f_y(t,α) = 2+v_0∙sin(α)∙t−5∙t^2
  • Check the Slider option and choose Slider No. 1 from the drop down list.
  • To make the available sliders visible, check View -> Show Sliders

Now you can move the slider and see how the distance depends on the parameter value.