KAlgebra/Homework/uk: Difference between revisions
(Created page with "Давайте знайдеом температуру суміші 40 літрів води з температурою 15°C та 30 літрів води з температу...") |
(Updating to match new version of source page) |
||
Line 79: | Line 79: | ||
===Приклад 1=== | ===Приклад 1=== | ||
<span class="mw-translate-fuzzy"> | |||
Розглянемо простий елемент множення з двома вхідними портами та одним вихідним. Для визначення результату у '''KAlgebra''' можна скористатися таким кодом: | Розглянемо простий елемент множення з двома вхідними портами та одним вихідним. Для визначення результату у '''KAlgebra''' можна скористатися таким кодом: | ||
</span> | |||
{{Input|1=and(var1, var2)}} | {{Input|1=and(var1, var2)}} | ||
Line 91: | Line 93: | ||
Для початку визначимо значення загального опору відповідно до такого закону: | Для початку визначимо значення загального опору відповідно до такого закону: | ||
<span class="mw-translate-fuzzy"> | |||
:R<sub>заг</sub> = (1/R1 + 1/R2)<sup>-1</sup> | :R<sub>заг</sub> = (1/R1 + 1/R2)<sup>-1</sup> | ||
:I = U/R<sub>заг</sub> | :I = U/R<sub>заг</sub> | ||
</span> | |||
Давайте створимо просту функцію у '''KAlgebra''' для виконання обчислень за вказаними формулами: | Давайте створимо просту функцію у '''KAlgebra''' для виконання обчислень за вказаними формулами: | ||
Line 109: | Line 113: | ||
===Приклад з однаковими матеріалами, але різними об’ємами та температурами=== | ===Приклад з однаковими матеріалами, але різними об’ємами та температурами=== | ||
<span class="mw-translate-fuzzy"> | |||
Давайте знайдеом температуру суміші 40 літрів води з температурою 15°C та 30 літрів води з температурою 70°C? | Давайте знайдеом температуру суміші 40 літрів води з температурою 15°C та 30 літрів води з температурою 70°C? | ||
Скористаємося законом збереження енергії. Ми знаємо, енергія суміші є сумою енергій складових, отже (літерою Q ми позначили внутрішню енергію):<br /> | Скористаємося законом збереження енергії. Ми знаємо, енергія суміші є сумою енергій складових, отже (літерою Q ми позначили внутрішню енергію):<br /> | ||
:U<sub>сум</sub> = U1 + U2 | :U<sub>сум</sub> = U1 + U2 | ||
</span> | |||
Internal energy is equal to the volumetric heat capacity times volume times temperature:<br> | Internal energy is equal to the volumetric heat capacity times volume times temperature:<br> |
Revision as of 09:32, 29 April 2011
На цій сторінці наведено приклади застосування KAlgebra для розв’язання конкретних задач.
Приклад з комбінаторики
Нехай слід визначити кількість способів, якими можна розсадити 6 осіб (p1, p2 ... p6) навколо круглого столу з 6 стільцями.
Очевидно, можливі такі варіанти:
p1 p2 p3 p4 p5 p6 p1 p2 p3 p4 p6 p5 p1 p2 p3 p5 p4 p6 p1 p2 p3 p5 p6 p4
і так далі.
Можна зауважити, що останню позицію за столом можна заповнити лише у один спосіб, передостанню — у 2, далі — у 3, у 4, у 5, і нарешті у 6 способів. Отже загальну кількість варіантів можна визначити за допомогою простої формули:
6*5*4*3*2*1
Введемо цю формулу у консоль KAlgebra, і програма обчислить відповідь:
(((((1)*2)*3)*4)*5)*6 =720
Подібний розподіл значень за варіантами, де кількість значень дорівнює кількості варіантів називається «переставляннями».
Ви можете скористатися функцією KAlgebra для обчислення кількості таких переставлянь (ця функція називається «факторіал»):
factorial(6)
дасть нам
factorial(6) =720
Як бачите, ми отримали той самий результат.
Приклад з теорії ймовірностей
Визначимо ймовірність викинути певну грань гральної кістки.
Сприятливим для нас буде викидання відповідної грані, а несприятливим - викидання інших граней.
Отже, сприятливим буде лише один варіант із шести:
- ймовірність = кількість вибраних граней / загальна кількість граней = 1/6
Отже тепер ми знаємо, що ймовірність викидання певної грані кістки дорівнює 1/6.
Ви можете створити просту функцію у KAlgebra для отримання значення ймовірності за означенням:
jmovirnist:=(spryyatlyvi,zagalom)->spryyatlyvi/zagalom
Теорія чисел
Нехай нам потрібно визначити суму всіх цілих чисел у певному діапазоні, наприклад, від 1 до 100. Знаходження подібної суми без певної вправності у арифметиці (якщо ви знаєте потрібний прийом, це нескладно) справа доволі марудна.
У KAlgebra передбачено чудові можливості для виконання подібних обчислень. Віддайте у консолі такі команди:
sum(x: x=1..100)
в результаті отримаємо:
sum(x: x=1..100) = 5050
Вказана нами синтаксична конструкція призначена для виконання такої послідовності дій:
- 1. Обмежити діапазон значень x
- 2. Взяти перше значення x
- 3. Взяти друге значення x і додати попереднє значення x
- 4. Взяти третє значення x і додати попереднє значення x
- ...
- N. Взяти останнє значення x і додати останнє значення x
Розрахунок електричних ланцюгів
Приклад 1
Розглянемо простий елемент множення з двома вхідними портами та одним вихідним. Для визначення результату у KAlgebra можна скористатися таким кодом:
and(var1, var2)
Ми отримаємо результат логічного множення вхідних змінних.
Приклад 2
Розглянемо простий електричний ланцюг: джерело живлення з напругою 3 В та два елементи опору (R1 і R2) з’єднані паралельно з опором 3 кОм. Потрібно визначити струм, який проходитиме ланцюгом.
Для початку визначимо значення загального опору відповідно до такого закону:
- Rзаг = (1/R1 + 1/R2)-1
- I = U/Rзаг
Давайте створимо просту функцію у KAlgebra для виконання обчислень за вказаними формулами:
R_zag:=(R1,R2)->(1/R1+1/R2)^-1 I:=(U,R_zag)->U/R_zag
Подивимося, що у нас вийшло:
I(3, R_zag(3000, 3000))
I(3, R_zag(3 000, 3 000)) = 0,002
Теплопровідність
Приклад з однаковими матеріалами, але різними об’ємами та температурами
Давайте знайдеом температуру суміші 40 літрів води з температурою 15°C та 30 літрів води з температурою 70°C?
Скористаємося законом збереження енергії. Ми знаємо, енергія суміші є сумою енергій складових, отже (літерою Q ми позначили внутрішню енергію):
- Uсум = U1 + U2
Internal energy is equal to the volumetric heat capacity times volume times temperature:
- U = C*V*T
So C(final)*V(final)*T(final) = C1*V1*T1 + C2*V2*T2
And since the heat capacities are all the same and cancel out, and the final volume is the sum of the two initial volumes:
- (V1+V2)*T(final) = V1*T1 + V2*T2
- or
- T(final) = (V1*T1 + V2*T2)/(V1+V2)
We can then either use this directly in KAlgebra:
(40*15 + 30*70)/(40 + 30)
(40*15+30*70)/(40+30) =38.5714
and get the final temperature, or put in a function if we need to repeat the computation:
finalTemp:=(v1,t1,v2,t2)->(v1*t1 + v2*t2)/(v1+v2)
Which we can then use like this:
finalTemp(40,15,30,70)
finalTemp(40, 15, 30, 70) =38.5714
Example Problem with Different Fluids
Now, suppose the two fluids have different volumetric heat capacities, such as 4180 J/(L*K) for the first liquid (water), and 1925 J/(L*K) for the second liquid (ethanol).
We will need to refer back to the equation:
- C(final)*V(final)*T(final) = C1*V1*T1 + C2*V2*T2
The resultant heat capacity will be the average of the capacities of the first and second fluids, weighted by volume(since it is a volumetric heat capacity rather than mass- or molar-specific):
- C(final) = (C1*V1 + C2*V2)/V(final)
And plugging this into the previous equation, we get:
- (C1*V1 + C2*V2)*T(final) = C1*V1*T1 + C2*V2*T2
- or
- T(final) = (C1*V1*T1 + C2*V2*T2)/(C1*V1 + C2*V2)
And either use this formula directly:
(4180*40*15 + 1925*30*70)/(4180*40+1925*30)
((4,180*40)*15+(1,925*30)*70)/(4,180*40+1,925*30) =29.1198
Or write a function if we want to repeat the calculation:
finalTemp2:=(c1,v1,t1,c2,v2,t2)->(c1*v1*t1 + c2*v2*t2)/(c1*v1+c2*v2)
Which we can then use like this:
finalTemp2(4180,40,15,1925,30,70)
finalTemp2(4,180, 40, 15, 1,925, 30, 70) =29.1198
Screenshot of KAlgebra after running these computations: