OpenPGP für Anfänger
Einleitung
Die effektive Sicherheit einer Kryptografielösung hängt mehr davon ab, dass man weiß, was man tut und was bestimmte technische Effekte bedeuten (und was eben nicht!), als von z.B. Schlüssellängen und der verwendeten Software. Deshalb soll dieser Artikel Ihnen eine Einführung in die Kernkonzepte von OpenPGP bieten.
Dieser Artikel ist für Anfänger, weswegen allzu komplizierte Aspekte weggelassen werden; er beschränkt sich auf das, was für Anfänger wichtig ist. Außerdem gibt es in diesem Artikel keine Anleitungen, wie Sie etwas mit einer bestimmten Software erreichen können. Dafür haben Sie die Dokumentation der jeweiligen Software. Dieser Artikel soll Ihnen helfen, die dort beschriebenen Aktionen besser zu verstehen.
Es gibt einen gesonderten Artikel, der Sie auf die Erzeugung eines Schlüssels vorbereitet, und einen, der die für fortgeschrittene Anwender relevanten Konzepte und Aspekte erklärt.
Asymmetrische Schlüssel
OpenPGP verwendet Schlüsselpaare. Das bedeutet, dass es immer einen geheimen Schlüssel und einen öffentlichen Schlüssel gibt, die zueinander gehören. Im Gegensatz zu dem intuitiv gut verständlichen Konzept der symmetrischen Verschlüsselung (d.h. dasselbe Passwort verschlüsselt und entschlüsselt die Daten) ist diese Technologie schwer verständlich. Denken Sie darüber nicht lange nach, akzeptieren Sie das einfach. Die Mathematik dahinter ist ein mittelmäßiger Alptraum, so dass die Betrachtung der Details für die meisten Leute nur anstrengende Zeitverschwendung wäre.
Wie die Bezeichnungen schon sagen: Der geheime Schlüssel darf nur seinem Besitzer bekannt sein, der öffentliche Schlüssel dagegen ist idealerweise jedem bekannt. Bei symmetrischer Verschlüsselung war das Problem, das gemeinsame Passwort sicher mit dem Empfänger der Nachricht auszutauschen. Mit öffentlichen Schlüsseln verschiebt sich das Problem: Jetzt liegt die (allerdings weniger offensichtliche) Herausforderung darin, verlässlich den richtigen öffentlichen Schlüssel zu verwenden (und nicht einen manipulierten, den einem ein Angreifer unterzuschieben versucht).
Verschlüsselung
Eine der beiden Funktionen von OpenPGP ist Verschlüsselung (und Entschlüsselung). Man verschlüsselt die Daten für einen oder mehrere öffentliche Schlüssel (symmetrische Verschlüsselung, also die Verwendung eines Passworts, ist auch möglich, wird aber nur selten verwendet). Für die Entschlüsselung ist der geheime Schlüssel eines der Empfängerschlüssel nötig.
Abgesehen von dem bereits erwähnten Problem "Welcher ist der richtige Schlüssel, für den verschlüsselt werden soll?" sind Verschlüsselung und Entschlüsselung ziemlich einfache Operationen, weil keine Gefahr von Missverständnissen besteht: Man verschlüsselt etwas, und niemand außer den Besitzern der Empfängerschlüssel kann es lesen. Auf der anderen Seite kann man etwas entweder entschlüsseln oder eben nicht. Die entschlüsselten Daten an sich mögen Fragen aufwerfen, die Kryptooperation aber nicht.
digitale Unterschriften (Signaturen)
Die Verschlüsselung von Daten kann gewissermaßen umgekehrt werden: Anstatt Daten zu erzeugen, die nur ein Schlüssel lesen kann, kann man (zu einem gegebenen Datensatz) Daten erzeugen, die jeder lesen kann, die aber nur mit einem bestimmten Schlüssel erzeugt worden sein können. Die Unmöglichkeit, ohne Zugriff auf diesen Schlüssel dieselben Daten zu erzeugen, macht diese Daten zu einer Unterschrift für den fraglichen Datensatz. Und auch hier gilt: Fragen Sie nicht, wie das funktioniert; es sei denn, Sie mögen Mathe sehr.
Eine der großartigen Eigenschaften von Kryptografie ist, dass für jeden (Computer) trivial zu überprüfen ist, ob ein bestimmter Schlüssel eine Unterschrift erzeugt hat – so ganz im Gegensatz zu händischen Unterschriften. Wenn man einen bestimmten Schlüssel einer bestimmten Person zuordnen kann, dann kann man auch die Unterschriften dieses Schlüssels dieser Person zuordnen – sofern der Schlüssel nicht kompromittiert wurde. Es ist Ihnen vielleicht schon aufgefallen: An dieser Stelle ist aus der technischen Problematik bereits eine organisatorische (und rechtliche) geworden.
Technologie kann nicht alle Ihre Probleme lösen. Es ist extrem wichtig für den sicheren Umgang mit Kryptografie, dass Sie sich immer im klaren darüber sind, wo die Grenze zwischen technischen und organisatorischen Problemen verläuft (also auf welcher Seite Sie gerade sind).
Die Zuordnung eines Schlüssels zu einer Person ist nicht einmal der schwierigste Teil. Der ist: "Was genau bedeutet diese Signatur?" Ist Ihre Einschätzung rechtlich bindend für den Unterzeichner? Die inhaltliche Bedeutung einer Signatur kann so gering sein wie bei einem Zeitstempel (was eine absolut seriöse und notwendige Anwendung von kryptografischen Signaturen ist!), der nur nachweist, dass ein bestimmtes Dokument zum fraglichen Zeitpunkt schon existierte (und nicht erst später erzeugt wurde).
Wenn jemand alle seine E-Mails signiert (um Absenderfälschungen vorzubeugen), dann bedeutet der bloße Umstand, dass Ihnen ein bestimmtes Dokument als Anhang einer signierten Mail geschickt wurde, rechtlich wohl erst mal gar nichts, sondern eben nur, dass der Absender Ihnen anbieten wollte, mal einen Blick darauf zu werfen. Wenn in der E-Mail (im signierten Text, nicht im unsignierten Betreff) etwas steht wie "Ich akzeptiere die angehängte Vereinbarung", dann dürfte die Bedeutung dagegen klar sein und das Restrisiko technischer Art sein (ein kompromittierter Schlüssel niedrigen Sicherheitsniveaus).
Deshalb ist es sinnvoll, Schlüssel auf unterschiedlichen Sicherheitsniveaus zu haben: Einen für eine angemessene Absicherung alltäglicher Aktivitäten (E-Mail) und einen für die Unterzeichnung von Verträgen, wobei jeder Schlüssel eine eigene Schlüsselrichtlinie haben sollte, die neben dem Sicherheitsniveau die Grenzen und Berechtigungen des jeweiligen Schlüssels erläutert.
Im Gegensatz zu Verschlüsselung hat eine Signatur keinen (technischen) Adressaten. Jeder mit Zugang zum öffentlichen Schlüssel kann die Signatur prüfen. In den meisten Fällen ist das kein Problem (sondern ganz im Gegenteil sogar gefordert). Statt eines Adressaten wählt man den geheimen Schlüssel aus, der die Signatur erzeugen soll (wenn man mehrere zur Auswahl hat).
Das große "Welcher ist der richtige öffentliche Schlüssel?"-Problem besteht bei Signaturen genauso wie bei Verschlüsselungen. Zwar nicht beim Erzeugen einer Signatur, aber bei der Interpretation einer (technisch) erfolgreichen Signaturprüfung. Die entscheidende Frage ist aber: "Was bedeutet diese Signatur?" Offensichtlich bedeutet eine Signatur, die von "irgendeinem" Schlüssel erzeugt wurde, gar nichts. Jeder könnte sie erzeugt haben. Die Existenz der Signatur an sich sagt nicht mehr aus als, dass jemand mit Zugang zum geheimen Schlüssel sich entschieden hat, diese Signatur zu erzeugen. Dies ist ein rein technischer Aspekt ohne praktische Relevanz.
Zuordnung der Schlüssel zu Personen
Dies ist einer der schwierigen Aspekte. Da nur wenige Leute dies wirklich gut machen, ist das ganze System weniger sicher als die meisten Leute annehmen. Man muss dabei vier Elemente auseinanderhalten. Das erste ist am einfachsten zu handhaben: der Schlüssel selber. Sie müssen sichern sein, dass Sie das richtige Schlüsselmaterial (die große Zufallszahl) verwenden.
Da Schlüssel zu groß sind, um manuell verglichen zu werden, vergleicht man statt dessen sichere Hashwerte. Auch dies: Übler Mathe-Kram, den Sie zum Glück nicht verstehen müssen. Eine Hashfunktion mach dies: Man füttert sie mit einer beliebigen Menge Daten welcher Art auch immer (von einer einzelnen Ziffer bis hin zu einem DVD-Image), und sie gibt daraufhin eine "Zahl" fester Länge aus. Wenn es als unmöglich gilt, unterschiedliche Eingabedaten zu finden, die zur selben Ausgabe führen, dann handelt es sich um eine sichere Hashfunktion.
OpenPGP nutzt zur Zeit die Hashfunktion SHA-1, um Schlüssel zu indentifizieren. SHA-1 hat zwar inzwischen bekannte Sicherheitsprobleme, aber die betreffen die Verwendung bei OpenPGP nicht. Ein SHA-1-Wert sieht so aus:
7D82 FB9F D25A 2CE4 5241 6C37 BF4B 8EEF 1A57 1DF5
Das nennt man den Fingerabdruck (fingerprint) des Schlüssels. Es gibt zwei Möglichkeiten, sich über die Identität eines Schlüssels (des reinen Schlüsselmaterials) Gewissheit zu verschaffen, ohne dass Dritte involviert sind: Man beschafft sich entweder den Schlüssel (oder ganz allgemein: die Datei) oder aber dessen Fingerabdruck jeweils aus einer sicheren Quelle (vom Schlüsselbesitzer übergebener USB-Stick), wobei der Fingerabdruck offensichtlich die einfachere Variante ist, da man ihn auf kleine Zettel oder sogar Visitenkarten drucken und verteilen kann.
Your OpenPGP application shows you the fingerprint of the key you got from an insecure source and you compare "what is" with "what it should be". If that is the same then you can be sure about the key itself. Thus: Always have small slips of paper with your fingerprint with you.
A public OpenPGP key (a "certificate") consists of two parts: the key material and the user IDs. A user ID is just a text string. The typical usage of this string is:
Firstname Lastname (comment) <email address>
Many user IDs do not have a comment, some do not have an email address and there are keys without a (real) name, too (e.g. for anonymous usage). Even if you are sure about the fingerprint the name, email, and comment can be wrong.
Email is rather easy to check (send an encrypted message to the address and wait for a response which guarantees your message to be decrypted).
Checking the identity of unknown persons is not easy. At keysigning parties this is done by checking passports and the like. But would you recognize a well forged passport?
Fortunately for your own purposes the identity is usually not so important. "The one I met on that event who calls himself Peter" is usually enough. So this is more a problem for the web of trust (see below).
Comments can be critial, too: The comment "CEO of whatever inc." may make a real difference (if not to you then to somebody else). The question when to accept (and certify) a user ID is a really complicated one.
Most people don't understand this problem and thus reduce their own security and that of others. You can make this decision for others easier by having user IDs which consist of just your name or just your email address. This may be easier acceptable by someone checking your user IDs.
If you are sure about a user ID you should certify it. This means that you make a digital signature over the public key and this user ID. You can make this certification for yourself only (called a "local signature") or for the public (the "web of trust"). If a key has several user IDs then you can decide which ones you certify.
You can give a rough hint how well you have checked the user ID and key, too. It makes a big difference to OpenPGP applications (and so should it to you!) whether they recognize a key as "valid" or not.
The keys you have the secret key for are considered valid automatically. The others can become valid by signatures of your own keys. And by keys of others.
The web of trust (WoT)
In connection with OpenPGP you will often hear about the web of trust. This in an indirect method for relating people to keys, a mighty but complicated technology. Beginners should not use the web of trust but first become familiar with verifying and certifying keys directly. The WoT is explained in the article OpenPGP For Advanced Users.
Summary of key usage
you need | in order to |
---|---|
the public key of another person | encrypt data for him |
check those key's signatures (technical correctness, not key validity) | |
your secret subkeys | decrypt data that has been encrypted for you |
create signatures for data | |
your secret main key | manage your key (add user IDs or subkeys, change settings like expiration date) |
certify other keys (i.e. some or all of their user IDs) | |
the fingerprint of the key of another person | ensure that you have imported the right key (before certifying the key either locally or for the public) |